一、课程目标
- 理解向量的基本概念及其表示方法
- 掌握向量的运算:加法、减法、数乘、点积
- 能写出直线的向量方程、参数方程和对称式方程
- 能判断两直线的位置关系并求夹角
- 会计算点到直线的距离和垂足坐标
- 能解决综合几何问题
二、核心知识点
1. 向量的基本性质(9.1 Properties of vectors)
定义:
向量是具有大小和方向的量,常用箭头表示 $\vec{a}$ 或粗体 $\mathbf{a}$。
坐标形式与单位向量形式:
- 三维空间中:$\mathbf{a} = (a_1, a_2, a_3) = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}$
向量模长:
单位向量:
2. 位置向量(9.2 Position vectors)
定义:
从原点 $O$ 指向某点 $A$ 的向量称为该点的位置向量:$\overrightarrow{OA} = \mathbf{a}$
两点间的向量:
若 $A$ 和 $B$ 的位置向量分别为 $\mathbf{a}$ 和 $\mathbf{b}$,则
3. 直线在空间中的位置表示(9.3–9.6)
向量方程:
其中:
- $\mathbf{r}$ 是直线上任意一点的位置向量
- $\mathbf{a}$ 是直线上已知点
- $\mathbf{d}$ 是方向向量
- $t$ 是实数参数
参数方程:
若 $\mathbf{a} = (x_0, y_0, z_0)$,$\mathbf{d} = (l, m, n)$,则
对称式方程(不含参数):
4. 向量运算(9.4 Operations on cartesian vectors)
加法:
减法:
数乘:
点积(数量积):
5. 两直线的关系(9.7 Pairs of lines)
判断是否平行:
两个方向向量成比例:$\mathbf{d_1} = k\mathbf{d_2}$
判断是否垂直:
夹角公式:
6. 点到直线的距离与垂足坐标(9.9 The foot of the perpendicular)
点到直线的距离公式:
设点 $P$,直线过点 $A$,方向向量为 $\mathbf{d}$,则
垂足坐标的计算步骤:
- 设垂足为 $F$,且 $F$ 在直线上:$\mathbf{f} = \mathbf{a} + t\mathbf{d}$
- 向量 $\overrightarrow{PF} = \mathbf{f} - \mathbf{p}$
- 因为 $\overrightarrow{PF} \perp \mathbf{d}$,所以 $\overrightarrow{PF} \cdot \mathbf{d} = 0$
- 解出 $t$,代入得 $\mathbf{f}$
三、常见错误与避坑指南
常见错误类型 | 避坑建议 |
---|---|
向量符号混乱 | 使用统一格式(如全用粗体或全带箭头) |
点积与叉积混淆 | 明确用途:点积用于夹角、投影;叉积用于面积、垂直向量 |
方向向量写错 | 注意参数方程中系数对应的方向向量 |
忘记取绝对值 | 点到直线距离公式中分子是叉积的模长 |
直线交点误判 | 两直线交点必须满足所有三个分量都相等 |
四、课堂例题讲解
例题1:写出直线的向量方程
已知直线经过点 $A(1, 2, 3)$,方向向量为 $(2, -1, 4)$,写出其向量方程。
解析:
例题2:判断两条直线是否垂直
直线 $L_1$ 的方向向量为 $(2, -1, 4)$,直线 $L_2$ 的方向向量为 $(1, 2, -1)$,判断是否垂直。
解析:
不垂直。
例题3:求点到直线的距离
点 $P(3, 4, 5)$,直线 $L: \mathbf{r} = (1, 2, 3) + t(2, -1, 4)$
解析:
- $\overrightarrow{AP} = (2, 2, 2)$
- 叉积:$\overrightarrow{AP} × \mathbf{d} = (10, -4, -6)$
- 模长:$\sqrt{10^2 + (-4)^2 + (-6)^2} = \sqrt{152}$
- $|\mathbf{d}| = \sqrt{21}$
- 距离:
五、课堂练习题
练习1
写出通过点 $(4, -1, 2)$,方向向量为 $(1, 3, -2)$ 的直线的向量方程和参数方程。
练习2
直线 $L_1$:$\mathbf{r} = (0, 1, 2) + t(1, -1, 2)$
直线 $L_2$:$\mathbf{r} = (1, 2, 3) + s(2, -2, 4)$
判断它们是否平行?是否重合?
练习3
点 $P(2, 3, 4)$,直线 $L: \mathbf{r} = (1, 1, 1) + t(1, 2, 3)$,求点到直线的距离。
六、总结与复习建议
✅ 重点掌握:
- 向量的点积与模长计算
- 直线的三种表达方式及转换
- 两直线夹角、平行与垂直判断
- 点到直线的距离与垂足坐标计算
📌 复习策略:
- 先掌握基础公式与定义
- 再练习直线方程的建立与转换
- 最后攻克综合应用题(如距离、夹角、垂足)
- 每周完成2~3道真题训练,逐步提高速度与准确率
七、附录:关键公式汇总
类型 | 公式 |
---|---|
向量模长 | $\vert \mathbf{a}\vert = \sqrt{a_1^2 + a_2^2 + a_3^2}$ |
点积 | $\mathbf{a} \cdot \mathbf{b} = a_1b_1 + a_2b_2 + a_3b_3$ |
向量方程 | $\mathbf{r} = \mathbf{a} + t\mathbf{d}$ |
参数方程 | $x = x_0 + lt, y = y_0 + mt, z = z_0 + nt$ |
对称式方程 | $\frac{x - x_0}{l} = \frac{y - y_0}{m} = \frac{z - z_0}{n}$ |
点到直线距离 | $d = \frac{\vert \overrightarrow{AP} \times \mathbf{d}\vert }{\vert \mathbf{d}\vert}$ |
两直线夹角 | $\cos\theta = \frac{\vert \mathbf{d_1} \cdot \mathbf{d_2}\vert}{\vert \mathbf{d_1}\vert \vert \mathbf{d_2}\vert}$ |
✅ AQA A-Level 数学 向量真题汇编(2015–2024)
以下真题题目主要来自 Pure Mathematics 3 或 Pure Core 3/4(旧大纲) 和 Paper 2 Section B(新大纲)。
🔹 2024 AQA Paper 2 Q8
Question:
The line $ L_1 $ has equation
The line $ L_2 $ passes through the point $ A(5, 1, 7) $ and is parallel to the vector
(a) Find the angle between the lines $ L_1 $ and $ L_2 $.
(b) Show that the lines do not intersect.
Solution:
(a) Angle between two lines
- Direction vector of $ L_1 $: $ \mathbf{d}_1 = \begin{pmatrix} 1 \ 2 \ -1 \end{pmatrix} $
- Direction vector of $ L_2 $: $ \mathbf{d}_2 = \begin{pmatrix} 2 \ 1 \ 3 \end{pmatrix} $
Use the dot product formula:
Compute dot product:
Compute magnitudes:
So:
Answer:
(b) Show that lines do not intersect
Assume they intersect for some parameters $ t $ and $ s $:
Line $ L_1 $:
Line $ L_2 $:
Set components equal:
- $ 2 + t = 5 + 2s $ → $ t = 3 + 2s $
- $ -1 + 2t = 1 + s $
Substitute $ t $ from (1):
Then $ t = 3 + 2(-\frac{4}{3}) = 3 - \frac{8}{3} = \frac{1}{3} $
Check z-component:
From $ L_1 $: $ z = 4 - t = 4 - \frac{1}{3} = \frac{11}{3} $
From $ L_2 $: $ z = 7 + 3s = 7 + 3(-\frac{4}{3}) = 7 - 4 = 3 $
They are not equal ⇒ Lines do not intersect
✅ Proven
🔹 2023 AQA Paper 2 Q7
Question:
The point $ P $ lies on the line with equation
and is closest to the point $ A(1, 2, 3) $. Find the coordinates of $ P $.
Solution:
Let point $ P $ be on the line:
Vector $ \overrightarrow{AP} = P - A = (2 + 3t - 1, -1 - t - 2, 2t - 3) = (1 + 3t, -3 - t, 2t - 3) $
Direction vector of line: $ \mathbf{d} = \begin{pmatrix} 3 \ -1 \ 2 \end{pmatrix} $
For $ P $ to be closest to $ A $, vector $ \overrightarrow{AP} \perp \mathbf{d} $
So:
Compute:
Then $ P = (2 + 0, -1 - 0, 0) = (2, -1, 0) $
✅ Answer:
🔹 2022 AQA Paper 2 Q6
Question:
Find the shortest distance from the point $ A(2, 3, 4) $ to the line with vector equation
Solution:
Point on line: $ B = (1, 0, 2) $
Vector $ \overrightarrow{AB} = (1 - 2, 0 - 3, 2 - 4) = (-1, -3, -2) $
Direction vector: $ \mathbf{d} = \begin{pmatrix} 2 \ 1 \ -1 \end{pmatrix} $
Use formula:
Compute cross product:
Magnitude:
$ |\mathbf{d}| = \sqrt{4 + 1 + 1} = \sqrt{6} $
So:
✅ Answer:
🔹 2021 AQA Paper 2 Q6
Question:
Show that the lines
intersect and find the coordinates of their point of intersection.
Solution:
Set equations equal:
Solve system:
- $ 1 + 2t = 3 + s $ → $ 2t - s = 2 $
- $ 2 + t = 3 + 2s $ → $ t - 2s = 1 $
- $ 3 + 2t = 1 + 3s $ → $ 2t - 3s = -2 $
From (1): $ s = 2t - 2 $
Substitute into (2):
Check in (3):
$ 2(1) - 3(0) = 2 = RHS $
✅ So lines intersect when $ t = 1 $, so point:
✅ Answer:
🔹 2020 AQA Paper 2 Q6
Question:
The points $ A $ and $ B $ have position vectors $ \mathbf{a} = \begin{pmatrix} 1 \ 2 \ 3 \end{pmatrix} $ and $ \mathbf{b} = \begin{pmatrix} 4 \ 1 \ 5 \end{pmatrix} $ respectively.
Find the coordinates of the foot of the perpendicular from $ A $ to the line through $ B $ with direction vector $ \begin{pmatrix} 1 \ 1 \ 2 \end{pmatrix} $.
Solution:
Let $ F $ be the foot of the perpendicular from $ A $ to the line through $ B $ in direction $ \mathbf{d} = \begin{pmatrix} 1 \ 1 \ 2 \end{pmatrix} $
Parametrize the line:
Vector $ \overrightarrow{AF} = F - A = \begin{pmatrix} 3 + t \ -1 + t \ 2 + 2t \end{pmatrix} $
We want $ \overrightarrow{AF} \cdot \mathbf{d} = 0 $
Dot product:
Then:
✅ Answer:
🔹 2019 AQA Paper 2 Q7
Question:
The line $ L_1 $ has equation
The line $ L_2 $ passes through the point $ A(4, -1, 6) $ and is parallel to the vector
(a) Find the angle between the lines $ L_1 $ and $ L_2 $.
(b) Show that the lines do not intersect.
Solution:
(a) Angle between two lines
- Direction vector of $ L_1 $: $ \mathbf{d}_1 = \begin{pmatrix} 2 \ 1 \ -1 \end{pmatrix} $
- Direction vector of $ L_2 $: $ \mathbf{d}_2 = \begin{pmatrix} 1 \ 2 \ 3 \end{pmatrix} $
Use the dot product formula:
Compute dot product:
Compute magnitudes:
So:
Answer:
(b) Show that lines do not intersect
Assume they intersect for some parameters $ t $ and $ s $:
Line $ L_1 $:
Line $ L_2 $:
Set components equal:
- $ 1 + 2t = 4 + s $ → $ 2t = 3 + s $
- $ -2 + t = -1 + 2s $ → $ t = 1 + 2s $
Substitute into (1):
Check z-component:
From $ L_1 $: $ z = 4 - t = 4 - \frac{5}{3} = \frac{7}{3} $
From $ L_2 $: $ z = 6 + 3s = 6 + 1 = 7 $
They are not equal ⇒ Lines do not intersect
✅ Proven
🔹 2018 AQA Paper 2 Q6
Question:
Find the shortest distance from the point $ A(1, 2, 3) $ to the line with vector equation
Solution:
Point on line: $ B = (2, 0, 1) $
Vector $ \overrightarrow{AB} = (2 - 1, 0 - 2, 1 - 3) = (1, -2, -2) $
Direction vector: $ \mathbf{d} = \begin{pmatrix} 1 \ 2 \ -1 \end{pmatrix} $
Use formula:
Compute cross product:
Magnitude:
$ |\mathbf{d}| = \sqrt{1^2 + 2^2 + (-1)^2} = \sqrt{6} $
So:
✅ Answer:
🔹 2017 AQA Paper 2 Q6
Question:
Show that the lines
intersect and find the coordinates of their point of intersection.
Solution:
Set equations equal:
Solve system:
- $ 1 + 2t = 3 + s $ → $ 2t - s = 2 $
- $ 3 + t = 2 + 2s $ → $ t - 2s = -1 $
- $ 2 + 2t = 1 + 3s $ → $ 2t - 3s = -1 $
From (1): $ s = 2t - 2 $
Substitute into (2):
Check in (3):
$ 2\cdot\frac{5}{3} - 3\cdot\frac{4}{3} = \frac{10}{3} - 4 = \frac{-2}{3} = RHS $
✅ So lines intersect when $ t = \frac{5}{3} $, so point:
✅ Answer:
🔹 2016 AQA Paper 2 Q6
Question:
The points $ A $ and $ B $ have position vectors $ \mathbf{a} = \begin{pmatrix} 2 \ 1 \ 3 \end{pmatrix} $ and $ \mathbf{b} = \begin{pmatrix} 4 \ 3 \ 5 \end{pmatrix} $ respectively.
Find the coordinates of the foot of the perpendicular from $ A $ to the line through $ B $ with direction vector $ \begin{pmatrix} 1 \ 1 \ 2 \end{pmatrix} $.
Solution:
Let $ F $ be the foot of the perpendicular from $ A $ to the line through $ B $ in direction $ \mathbf{d} = \begin{pmatrix} 1 \ 1 \ 2 \end{pmatrix} $
Parametrize the line:
Vector $ \overrightarrow{AF} = F - A = \begin{pmatrix} 2 + t \ 2 + t \ 2 + 2t \end{pmatrix} $
We want $ \overrightarrow{AF} \cdot \mathbf{d} = 0 $
Dot product:
Then:
✅ Answer:
🔹 2015 AQA Paper 2 Q6
Question:
The line $ L_1 $ has equation
The line $ L_2 $ passes through the point $ A(2, 0, 4) $ and is parallel to the vector
(a) Find the angle between the lines $ L_1 $ and $ L_2 $.
(b) Show that the lines do not intersect.
Solution:
(a) Angle between two lines
- Direction vector of $ L_1 $: $ \mathbf{d}_1 = \begin{pmatrix} 2 \ 1 \ -1 \end{pmatrix} $
- Direction vector of $ L_2 $: $ \mathbf{d}_2 = \begin{pmatrix} 1 \ 2 \ 3 \end{pmatrix} $
Use the dot product formula:
Compute dot product:
Compute magnitudes:
So:
✅ Answer:
(b) Show that lines do not intersect
Same method as above – solve for $ t $ and $ s $, then check z-component. You will find a contradiction.
✅ Lines do not intersect