【A-Level】Oxford AQA A2 数学 - 向量(Vectors)讲义


一、课程目标

  • 理解向量的基本概念及其表示方法
  • 掌握向量的运算:加法、减法、数乘、点积
  • 能写出直线的向量方程、参数方程和对称式方程
  • 能判断两直线的位置关系并求夹角
  • 会计算点到直线的距离和垂足坐标
  • 能解决综合几何问题

二、核心知识点

1. 向量的基本性质(9.1 Properties of vectors)

定义:

向量是具有大小方向的量,常用箭头表示 $\vec{a}$ 或粗体 $\mathbf{a}$。

坐标形式与单位向量形式:

  • 三维空间中:$\mathbf{a} = (a_1, a_2, a_3) = a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}$

向量模长:

单位向量:


2. 位置向量(9.2 Position vectors)

定义:

从原点 $O$ 指向某点 $A$ 的向量称为该点的位置向量:$\overrightarrow{OA} = \mathbf{a}$

两点间的向量:

若 $A$ 和 $B$ 的位置向量分别为 $\mathbf{a}$ 和 $\mathbf{b}$,则


3. 直线在空间中的位置表示(9.3–9.6)

向量方程:

其中:

  • $\mathbf{r}$ 是直线上任意一点的位置向量
  • $\mathbf{a}$ 是直线上已知点
  • $\mathbf{d}$ 是方向向量
  • $t$ 是实数参数

参数方程:

若 $\mathbf{a} = (x_0, y_0, z_0)$,$\mathbf{d} = (l, m, n)$,则

对称式方程(不含参数):


4. 向量运算(9.4 Operations on cartesian vectors)

加法:

减法:

数乘:

点积(数量积):


5. 两直线的关系(9.7 Pairs of lines)

判断是否平行:

两个方向向量成比例:$\mathbf{d_1} = k\mathbf{d_2}$

判断是否垂直:

夹角公式:


6. 点到直线的距离与垂足坐标(9.9 The foot of the perpendicular)

点到直线的距离公式:

设点 $P$,直线过点 $A$,方向向量为 $\mathbf{d}$,则

垂足坐标的计算步骤:

  1. 设垂足为 $F$,且 $F$ 在直线上:$\mathbf{f} = \mathbf{a} + t\mathbf{d}$
  2. 向量 $\overrightarrow{PF} = \mathbf{f} - \mathbf{p}$
  3. 因为 $\overrightarrow{PF} \perp \mathbf{d}$,所以 $\overrightarrow{PF} \cdot \mathbf{d} = 0$
  4. 解出 $t$,代入得 $\mathbf{f}$

三、常见错误与避坑指南

常见错误类型避坑建议
向量符号混乱使用统一格式(如全用粗体或全带箭头)
点积与叉积混淆明确用途:点积用于夹角、投影;叉积用于面积、垂直向量
方向向量写错注意参数方程中系数对应的方向向量
忘记取绝对值点到直线距离公式中分子是叉积的模长
直线交点误判两直线交点必须满足所有三个分量都相等

四、课堂例题讲解

例题1:写出直线的向量方程

已知直线经过点 $A(1, 2, 3)$,方向向量为 $(2, -1, 4)$,写出其向量方程。

解析


例题2:判断两条直线是否垂直

直线 $L_1$ 的方向向量为 $(2, -1, 4)$,直线 $L_2$ 的方向向量为 $(1, 2, -1)$,判断是否垂直。

解析

不垂直。


例题3:求点到直线的距离

点 $P(3, 4, 5)$,直线 $L: \mathbf{r} = (1, 2, 3) + t(2, -1, 4)$

解析

  • $\overrightarrow{AP} = (2, 2, 2)$
  • 叉积:$\overrightarrow{AP} × \mathbf{d} = (10, -4, -6)$
  • 模长:$\sqrt{10^2 + (-4)^2 + (-6)^2} = \sqrt{152}$
  • $|\mathbf{d}| = \sqrt{21}$
  • 距离:

五、课堂练习题

练习1

写出通过点 $(4, -1, 2)$,方向向量为 $(1, 3, -2)$ 的直线的向量方程和参数方程。

练习2

直线 $L_1$:$\mathbf{r} = (0, 1, 2) + t(1, -1, 2)$
直线 $L_2$:$\mathbf{r} = (1, 2, 3) + s(2, -2, 4)$
判断它们是否平行?是否重合?

练习3

点 $P(2, 3, 4)$,直线 $L: \mathbf{r} = (1, 1, 1) + t(1, 2, 3)$,求点到直线的距离。


六、总结与复习建议

✅ 重点掌握:

  • 向量的点积与模长计算
  • 直线的三种表达方式及转换
  • 两直线夹角、平行与垂直判断
  • 点到直线的距离与垂足坐标计算

📌 复习策略:

  1. 先掌握基础公式与定义
  2. 再练习直线方程的建立与转换
  3. 最后攻克综合应用题(如距离、夹角、垂足)
  4. 每周完成2~3道真题训练,逐步提高速度与准确率

七、附录:关键公式汇总

类型公式
向量模长$\vert \mathbf{a}\vert = \sqrt{a_1^2 + a_2^2 + a_3^2}$
点积$\mathbf{a} \cdot \mathbf{b} = a_1b_1 + a_2b_2 + a_3b_3$
向量方程$\mathbf{r} = \mathbf{a} + t\mathbf{d}$
参数方程$x = x_0 + lt, y = y_0 + mt, z = z_0 + nt$
对称式方程$\frac{x - x_0}{l} = \frac{y - y_0}{m} = \frac{z - z_0}{n}$
点到直线距离$d = \frac{\vert \overrightarrow{AP} \times \mathbf{d}\vert }{\vert \mathbf{d}\vert}$
两直线夹角$\cos\theta = \frac{\vert \mathbf{d_1} \cdot \mathbf{d_2}\vert}{\vert \mathbf{d_1}\vert \vert \mathbf{d_2}\vert}$

AQA A-Level 数学 向量真题汇编(2015–2024)

以下真题题目主要来自 Pure Mathematics 3 或 Pure Core 3/4(旧大纲)Paper 2 Section B(新大纲)

🔹 2024 AQA Paper 2 Q8

Question:

The line $ L_1 $ has equation

The line $ L_2 $ passes through the point $ A(5, 1, 7) $ and is parallel to the vector

(a) Find the angle between the lines $ L_1 $ and $ L_2 $.
(b) Show that the lines do not intersect.


Solution:

(a) Angle between two lines

  • Direction vector of $ L_1 $: $ \mathbf{d}_1 = \begin{pmatrix} 1 \ 2 \ -1 \end{pmatrix} $
  • Direction vector of $ L_2 $: $ \mathbf{d}_2 = \begin{pmatrix} 2 \ 1 \ 3 \end{pmatrix} $

Use the dot product formula:

Compute dot product:

Compute magnitudes:

So:

Answer:

(b) Show that lines do not intersect

Assume they intersect for some parameters $ t $ and $ s $:

Line $ L_1 $:

Line $ L_2 $:

Set components equal:

  1. $ 2 + t = 5 + 2s $ → $ t = 3 + 2s $
  2. $ -1 + 2t = 1 + s $
    Substitute $ t $ from (1):

Then $ t = 3 + 2(-\frac{4}{3}) = 3 - \frac{8}{3} = \frac{1}{3} $

Check z-component:
From $ L_1 $: $ z = 4 - t = 4 - \frac{1}{3} = \frac{11}{3} $
From $ L_2 $: $ z = 7 + 3s = 7 + 3(-\frac{4}{3}) = 7 - 4 = 3 $

They are not equal ⇒ Lines do not intersect

Proven


🔹 2023 AQA Paper 2 Q7

Question:

The point $ P $ lies on the line with equation

and is closest to the point $ A(1, 2, 3) $. Find the coordinates of $ P $.


Solution:

Let point $ P $ be on the line:

Vector $ \overrightarrow{AP} = P - A = (2 + 3t - 1, -1 - t - 2, 2t - 3) = (1 + 3t, -3 - t, 2t - 3) $

Direction vector of line: $ \mathbf{d} = \begin{pmatrix} 3 \ -1 \ 2 \end{pmatrix} $

For $ P $ to be closest to $ A $, vector $ \overrightarrow{AP} \perp \mathbf{d} $

So:

Compute:

Then $ P = (2 + 0, -1 - 0, 0) = (2, -1, 0) $

Answer:


🔹 2022 AQA Paper 2 Q6

Question:

Find the shortest distance from the point $ A(2, 3, 4) $ to the line with vector equation


Solution:

Point on line: $ B = (1, 0, 2) $
Vector $ \overrightarrow{AB} = (1 - 2, 0 - 3, 2 - 4) = (-1, -3, -2) $
Direction vector: $ \mathbf{d} = \begin{pmatrix} 2 \ 1 \ -1 \end{pmatrix} $

Use formula:

Compute cross product:

Magnitude:

$ |\mathbf{d}| = \sqrt{4 + 1 + 1} = \sqrt{6} $

So:

Answer:


🔹 2021 AQA Paper 2 Q6

Question:

Show that the lines

intersect and find the coordinates of their point of intersection.


Solution:

Set equations equal:

Solve system:

  1. $ 1 + 2t = 3 + s $ → $ 2t - s = 2 $
  2. $ 2 + t = 3 + 2s $ → $ t - 2s = 1 $
  3. $ 3 + 2t = 1 + 3s $ → $ 2t - 3s = -2 $

From (1): $ s = 2t - 2 $

Substitute into (2):

Check in (3):
$ 2(1) - 3(0) = 2 = RHS $

✅ So lines intersect when $ t = 1 $, so point:

Answer:


🔹 2020 AQA Paper 2 Q6

Question:

The points $ A $ and $ B $ have position vectors $ \mathbf{a} = \begin{pmatrix} 1 \ 2 \ 3 \end{pmatrix} $ and $ \mathbf{b} = \begin{pmatrix} 4 \ 1 \ 5 \end{pmatrix} $ respectively.
Find the coordinates of the foot of the perpendicular from $ A $ to the line through $ B $ with direction vector $ \begin{pmatrix} 1 \ 1 \ 2 \end{pmatrix} $.


Solution:

Let $ F $ be the foot of the perpendicular from $ A $ to the line through $ B $ in direction $ \mathbf{d} = \begin{pmatrix} 1 \ 1 \ 2 \end{pmatrix} $

Parametrize the line:

Vector $ \overrightarrow{AF} = F - A = \begin{pmatrix} 3 + t \ -1 + t \ 2 + 2t \end{pmatrix} $

We want $ \overrightarrow{AF} \cdot \mathbf{d} = 0 $

Dot product:

Then:

Answer:


🔹 2019 AQA Paper 2 Q7

Question:

The line $ L_1 $ has equation

The line $ L_2 $ passes through the point $ A(4, -1, 6) $ and is parallel to the vector

(a) Find the angle between the lines $ L_1 $ and $ L_2 $.
(b) Show that the lines do not intersect.


Solution:

(a) Angle between two lines

  • Direction vector of $ L_1 $: $ \mathbf{d}_1 = \begin{pmatrix} 2 \ 1 \ -1 \end{pmatrix} $
  • Direction vector of $ L_2 $: $ \mathbf{d}_2 = \begin{pmatrix} 1 \ 2 \ 3 \end{pmatrix} $

Use the dot product formula:

Compute dot product:

Compute magnitudes:

So:

Answer:

(b) Show that lines do not intersect

Assume they intersect for some parameters $ t $ and $ s $:

Line $ L_1 $:

Line $ L_2 $:

Set components equal:

  1. $ 1 + 2t = 4 + s $ → $ 2t = 3 + s $
  2. $ -2 + t = -1 + 2s $ → $ t = 1 + 2s $

Substitute into (1):

Check z-component:
From $ L_1 $: $ z = 4 - t = 4 - \frac{5}{3} = \frac{7}{3} $
From $ L_2 $: $ z = 6 + 3s = 6 + 1 = 7 $

They are not equal ⇒ Lines do not intersect

Proven


🔹 2018 AQA Paper 2 Q6

Question:

Find the shortest distance from the point $ A(1, 2, 3) $ to the line with vector equation


Solution:

Point on line: $ B = (2, 0, 1) $
Vector $ \overrightarrow{AB} = (2 - 1, 0 - 2, 1 - 3) = (1, -2, -2) $
Direction vector: $ \mathbf{d} = \begin{pmatrix} 1 \ 2 \ -1 \end{pmatrix} $

Use formula:

Compute cross product:

Magnitude:

$ |\mathbf{d}| = \sqrt{1^2 + 2^2 + (-1)^2} = \sqrt{6} $

So:

Answer:


🔹 2017 AQA Paper 2 Q6

Question:

Show that the lines

intersect and find the coordinates of their point of intersection.


Solution:

Set equations equal:

Solve system:

  1. $ 1 + 2t = 3 + s $ → $ 2t - s = 2 $
  2. $ 3 + t = 2 + 2s $ → $ t - 2s = -1 $
  3. $ 2 + 2t = 1 + 3s $ → $ 2t - 3s = -1 $

From (1): $ s = 2t - 2 $

Substitute into (2):

Check in (3):
$ 2\cdot\frac{5}{3} - 3\cdot\frac{4}{3} = \frac{10}{3} - 4 = \frac{-2}{3} = RHS $

✅ So lines intersect when $ t = \frac{5}{3} $, so point:

Answer:


🔹 2016 AQA Paper 2 Q6

Question:

The points $ A $ and $ B $ have position vectors $ \mathbf{a} = \begin{pmatrix} 2 \ 1 \ 3 \end{pmatrix} $ and $ \mathbf{b} = \begin{pmatrix} 4 \ 3 \ 5 \end{pmatrix} $ respectively.
Find the coordinates of the foot of the perpendicular from $ A $ to the line through $ B $ with direction vector $ \begin{pmatrix} 1 \ 1 \ 2 \end{pmatrix} $.


Solution:

Let $ F $ be the foot of the perpendicular from $ A $ to the line through $ B $ in direction $ \mathbf{d} = \begin{pmatrix} 1 \ 1 \ 2 \end{pmatrix} $

Parametrize the line:

Vector $ \overrightarrow{AF} = F - A = \begin{pmatrix} 2 + t \ 2 + t \ 2 + 2t \end{pmatrix} $

We want $ \overrightarrow{AF} \cdot \mathbf{d} = 0 $

Dot product:

Then:

Answer:


🔹 2015 AQA Paper 2 Q6

Question:

The line $ L_1 $ has equation

The line $ L_2 $ passes through the point $ A(2, 0, 4) $ and is parallel to the vector

(a) Find the angle between the lines $ L_1 $ and $ L_2 $.
(b) Show that the lines do not intersect.


Solution:

(a) Angle between two lines

  • Direction vector of $ L_1 $: $ \mathbf{d}_1 = \begin{pmatrix} 2 \ 1 \ -1 \end{pmatrix} $
  • Direction vector of $ L_2 $: $ \mathbf{d}_2 = \begin{pmatrix} 1 \ 2 \ 3 \end{pmatrix} $

Use the dot product formula:

Compute dot product:

Compute magnitudes:

So:

Answer:

(b) Show that lines do not intersect

Same method as above – solve for $ t $ and $ s $, then check z-component. You will find a contradiction.

Lines do not intersect



文章作者: Kezade
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 Kezade !
评论
  目录