Table of Contents
- Basic Integration Methods
- Definite Integral Applications
- Improper Integrals
- Differential Equations
- Physical Applications
- FRQ Solutions
1. Basic Integration Methods
1.1 Power Rule & Exponential Functions
Key Formulas
- $\int x^n \, dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1)$
- $\int e^x \, dx = e^x + C$
1.2 Trigonometric Integrals
Key Formulas
- $\int \sin x \, dx = -\cos x + C$
- $\int \sec^2 x \, dx = \tan x + C$
- $\int \tan x \, dx = \ln|\sec x| + C$
FRQ 2019 Q2(a)
Find $\int \frac{\sin x}{\cos^3 x} \, dx$.
Solution:
Let $ u = \cos x $, $ du = -\sin x \, dx $:
1.3 Substitution Rule
FRQ 2021 Q3(a)
Evaluate $\int_0^{\pi/4} \tan^3 x \sec^2 x \, dx$.
Solution:
Let $ u = \tan x $, $ du = \sec^2 x \, dx $.
When $ x = 0 $, $ u = 0 $; $ x = \pi/4 $, $ u = 1 $:
1.4 Integration by Parts
Formula: $\int u \, dv = uv - \int v \, du$
FRQ 2017 Q6(b)
Compute $\int x^2 \ln x \, dx$.
Solution:
Let $ u = \ln x $, $ dv = x^2 \, dx $:
$ du = \frac{1}{x} dx $, $ v = \frac{x^3}{3} $:
2. Definite Integral Applications
2.1 Area Between Curves
FRQ 2016 Q1
Let $ R $ be the region enclosed by $ y = 2x $ and $ y = x^2 $. Find the area of $ R $.
Solution:
Intersection points: $ 2x = x^2 \Rightarrow x = 0, 2 $:
2.2 Volumes of Revolution (Disk Method)
FRQ 2019 Q3
Find the volume generated by rotating $ y = \sqrt{x} $ about the x-axis from $ x = 0 $ to $ x = 4 $.
Solution:
2.3 Arc Length
FRQ 2021 Q2(c)
Calculate the length of $ y = \frac{2}{3}x^{3/2} $ from $ x = 0 $ to $ x = 3 $.
Solution:
$ f’(x) = x^{1/2} $:
3. Improper Integrals
FRQ 2018 Q5
Determine if $\int_1^\infty \frac{1}{x^2} \, dx$ converges.
Solution:
4. Differential Equations
FRQ 2022 Q4
Solve $\frac{dy}{dx} = 2x$ with $ y(0) = 1 $.
Solution:
Apply $ y(0) = 1 $:
5. Physical Applications
Work Done
FRQ 2015 Q6
A force of $ F(x) = 3x^2 $ N moves an object along the x-axis from $ x = 1 $ to $ x = 3 $. Compute the work done.
Solution:
6. FRQ Solutions
FRQ 2020 Q2 (Modified)
Problem:
Let $ R $ be the region bounded by $ y = e^{-x} $, $ y = 0 $, $ x = 0 $, and $ x = 1 $. Find the volume when $ R $ is rotated about the y-axis.
Solution (Shell Method):
Using integration by parts:
Let $ u = x $, $ dv = e^{-x} dx $; $ du = dx $, $ v = -e^{-x} $:
💡 Exam Tips:
- Prioritize substitution when seeing composite functions (e.g., $\tan x \cdot \sec^2 x$).
- Disk vs. Shell Method: Disk for rotation around horizontal axis, Shell for vertical axis.
- Always check limits for improper integrals.
- Units matter in physics applications (e.g., Joules for work).