【AP Calculus】Integration Techniques & Applications (Past 10-Year FRQs)


Table of Contents

  1. Basic Integration Methods
  2. Definite Integral Applications
  3. Improper Integrals
  4. Differential Equations
  5. Physical Applications
  6. FRQ Solutions

1. Basic Integration Methods

1.1 Power Rule & Exponential Functions

Key Formulas

  • $\int x^n \, dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1)$
  • $\int e^x \, dx = e^x + C$

1.2 Trigonometric Integrals

Key Formulas

  • $\int \sin x \, dx = -\cos x + C$
  • $\int \sec^2 x \, dx = \tan x + C$
  • $\int \tan x \, dx = \ln|\sec x| + C$

FRQ 2019 Q2(a)
Find $\int \frac{\sin x}{\cos^3 x} \, dx$.

Solution:

Let $ u = \cos x $, $ du = -\sin x \, dx $:


1.3 Substitution Rule

FRQ 2021 Q3(a)
Evaluate $\int_0^{\pi/4} \tan^3 x \sec^2 x \, dx$.

Solution:
Let $ u = \tan x $, $ du = \sec^2 x \, dx $.
When $ x = 0 $, $ u = 0 $; $ x = \pi/4 $, $ u = 1 $:


1.4 Integration by Parts

Formula: $\int u \, dv = uv - \int v \, du$

FRQ 2017 Q6(b)
Compute $\int x^2 \ln x \, dx$.

Solution:
Let $ u = \ln x $, $ dv = x^2 \, dx $:
$ du = \frac{1}{x} dx $, $ v = \frac{x^3}{3} $:


2. Definite Integral Applications

2.1 Area Between Curves

FRQ 2016 Q1
Let $ R $ be the region enclosed by $ y = 2x $ and $ y = x^2 $. Find the area of $ R $.

Solution:
Intersection points: $ 2x = x^2 \Rightarrow x = 0, 2 $:


2.2 Volumes of Revolution (Disk Method)

FRQ 2019 Q3
Find the volume generated by rotating $ y = \sqrt{x} $ about the x-axis from $ x = 0 $ to $ x = 4 $.

Solution:


2.3 Arc Length

FRQ 2021 Q2(c)
Calculate the length of $ y = \frac{2}{3}x^{3/2} $ from $ x = 0 $ to $ x = 3 $.

Solution:
$ f’(x) = x^{1/2} $:


3. Improper Integrals

FRQ 2018 Q5
Determine if $\int_1^\infty \frac{1}{x^2} \, dx$ converges.

Solution:


4. Differential Equations

FRQ 2022 Q4
Solve $\frac{dy}{dx} = 2x$ with $ y(0) = 1 $.

Solution:

Apply $ y(0) = 1 $:


5. Physical Applications

Work Done

FRQ 2015 Q6
A force of $ F(x) = 3x^2 $ N moves an object along the x-axis from $ x = 1 $ to $ x = 3 $. Compute the work done.

Solution:


6. FRQ Solutions

FRQ 2020 Q2 (Modified)

Problem:
Let $ R $ be the region bounded by $ y = e^{-x} $, $ y = 0 $, $ x = 0 $, and $ x = 1 $. Find the volume when $ R $ is rotated about the y-axis.

Solution (Shell Method):

Using integration by parts:
Let $ u = x $, $ dv = e^{-x} dx $; $ du = dx $, $ v = -e^{-x} $:


💡 Exam Tips:

  • Prioritize substitution when seeing composite functions (e.g., $\tan x \cdot \sec^2 x$).
  • Disk vs. Shell Method: Disk for rotation around horizontal axis, Shell for vertical axis.
  • Always check limits for improper integrals.
  • Units matter in physics applications (e.g., Joules for work).

文章作者: Kezade
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 Kezade !
评论
  目录